

SPRING 2023

Breast Cancer Biomarker Analysis

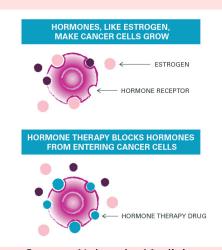
#1

What is a biomarker in cancer treatment?

In an oncology context, biomarkers are genes, proteins, and other substances that can provide information on a person's cancer. Biomarker testing can help with not just diagnosis of cancer but also treatment and tracking disease progression.

Some common types of Biomarkers are:

Type 0 - natural history marker for measuring disease progression overtime


Type 1 - drug activity biomarker to indicate effectiveness of drug treatment

Type 2 - surrogate end point marker to predict effect of therapeutic intervention

- There are multiple biomarkers associated with Breast Cancer. We chose to analyze the Estrogen Receptor (ER) because it is the most important biomarker in breast cancer.
- ER-positive tumors respond highly to endocrine therapy (estrogen feeds the growth of the tumor), while ER-negative tumors don't. Knowing if a breast cancer is ER(+) or not can help healthcare providers whether or not to administer anti-estrogen therapy
- According to the literature, we theorize that ER(+) samples should show a higher pattern of estrogen expression than ER(-) sample

2

Estrogen Receptor in Breast Cancer

Source: Nebraska Medicine

#3

Data and Analysis Method

- We used the Gene Expression Omnibus (GEO) and analyzed a dataset pertaining to ER(+) expression. GEO is a public repository of arrays, sequencing, and functional genomic data
- We used GSE17040: "Functional ER alpha transcriptional regulatory network for cell cycle in an ER(+) breast cancer subgroup." There are 57 samples, 46 ER(+) and 11 ER(-).
- The data takes from both cell line and clinical samples. The platform used is GPL887 Agilent-012097 Human 1A Microarray (V2) G4110B (Feature Number version)
- "Analyze with GEO2R" to automatically run statistical analysis

 --> Locate the estrogen receptor gene (estrogen receptor 1 ESR1) among all of the genes sampled --> Analyze expression
- level and statistical significance
 Download "Series Matrix File" to access full dataset --> Locate ER gene --> Make box plot to visualize ER(+) vs ER(-)

SPRING 2023

#4

Results

- For ESR1 (ID 5561), the log fold change is 4.04669853, and the adjusted P-value is 2.03E-08 (<0.05). The log fold change indicates the expression level of an ER group relative to the other. The P-value indicates statistical significance (adjusted t-test)
- The result means that the ER(+) variant has an expression level around 4 times higher than the ER(-), and that this difference is statistically significant
- This finding corroborates with the hypothesized pattern: ER(+) expresses estrogen at a statistically higher level than ER(-)

VOLCANO PLOT

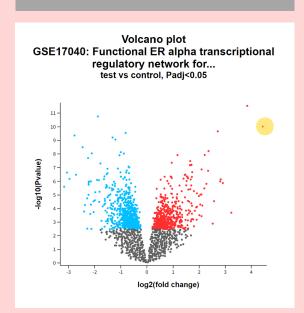


Figure 1: Genes that are significantly downregulated (blue) or up-regulated (red). ESR1 is among the up-regulated gene (highlighted in yellow).

BOX PLOT

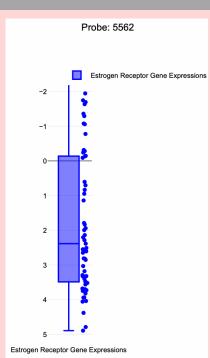


Figure 2: This showcases ER (+) which Confirms that this probe of has lower gene expression.
This plots has a negative skewness meaning that this negative distribution has a lot of low gene expression levels

#5

Discussion

- This project is an entry exercise into analysis of a publicly available genomic dataset. There are opportunities to explore and analyze at higher levels of complexities
- A future project could look at estrogen expression in pre-endocrine therapy vs. post-endocrine therapy
- Besides estrogen receptor, progesterone receptor is also an important biomarker in breast cancer. Breast cancers with either ER positive, PR positive, or both, are known as hormone receptor-positive cancers. Interestingly, PR(+) occurs almost only concurrently with ER(+) (very rare PR(+), ER(-) occurrences.) ER(+), PR(+) tumors respond better to endocrine therapy than ER(+), PR(-) tumors. (Weigel 2010). A future analysis could investigate this relationship
- ER positive cancers that have a low number of cells with estrogen receptors may respond differently to treatment

6

Acknowledgment

- Thank you to our coach Dr. Hermioni Zouridis for her technical knowledge, guidance, and encouragement throughout the project
- Thank you Nvolve Founder Faye O'Brien and the Nvolve community for faciliating an educational experience for aspiring women in STEM and medicine

Citations

Biomarker testing for cancer treatment. National Cancer Institute. (2021). Retrieved April 14, 2023, from https://www.cancer.gov/about-cancer/treatment/types/biomarker-testing-cancer-treatment

Person. (2023, February 13). Breast cancer study tests pairing hormone therapy with immunotherapy. Nebraska Medicine. Retrieved April 21, 2023, from https://www.nebraskamed.com/clinical-trials/breast-cancer-study-tests-pairing-hormone-therapy-with-immunotherapy

immunotherapy

Tandon, W. by R., Mash, & Katie. (2021, November 29). What is a biomarker? definition, types, applications explained. Bitesize Bio.

Retrieved April 14, 2023, from https://bitesizebio.com/26559/an-introduction-to-biomarkers/

14, 2023, from https://www.ncbi.nlm.nih.gov/geo/info/overview.html

U.S. National Library of Medicine. (n.d.). Geo Overview - Geo - NCBI. National Center for Biotechnology Information. Retrieved April